Abstract

Malate dehydrogenase (MDH) exists in multimeric form in normal and extreme solvent conditions where residues of the interface are involved in specific interactions. The interface salt-bridge (ISB) and its microenvironment (ME) residues may have a crucial role in the stability and specificity of the interface. To gain insight into this, we have analyzed 218 ISBs from 42 interfaces of 15 crystal structures along with their sequences. Comparative analyses demonstrate that the ISB strength is ∼30 times greater in extremophilic cases than that of the normal one. To this end, the interface residue propensity, ISB design and pair selection, and ME-residue’s types, i.e., type-I and type-II, are seen to be intrinsically involved. Although Type-I is a common type, Type-II appears to be extremophile-specific, where the net ME-residue count is much lower with an excessive net ME-energy contribution, which seems to be a novel interface compaction strategy. Furthermore, the interface strength can be enhanced by selecting the desired mutant from the net-energy profile of all possible mutations of an unfavorable ME-residue. The study that applies to other similar systems finds applications in protein–protein interaction and protein engineering. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.