Abstract

Underground food storage represents an interesting solution to the increasing demand for new food storage space, combining this demand with sustainable land exploitation. It also reduces the energy demand for food conservation, therefore limiting storage costs and greenhouse gas emissions. Moreover, atmospheric conditions can be easily controlled in underground warehouses, ensuring optimal long-term maintenance of the stored food.This paper presents a case study located in the Western Dolomites (Val Di Non, Trento, Italy), where mining activity is followed by the creation of storage space not only for food, but also for groundwater and a data hosting center. After the extraction of the dolomitic rock used in construction, underground excavated spaces are converted into warehouses, whose storage capability is improved once the inner surfaces have been protected by a gas-proof mineral hydraulic lime material, developed for this purpose.The thermal behavior of the rock mass over the first few years is analyzed by means of a Finite Element Model and compared with on-site monitoring data. Laboratory measurements of the thermal properties of the dolomite rock and the temperature data registered in the field permitted the development of a preliminary numerical model, in order to describe the heat exchange between the cavern and the rock mass and supply data to support future developments. Finally, the specific energetic consumption is compared with the one required by an aboveground deposit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.