Abstract
In this paper, we apply stochastic differential equations with the Wiener process to investigate the soliton solutions of the Chaffee–Infante (CI) equation. The CI equation, a fundamental model in mathematical physics, explains concepts such as wave propagation and diffusion processes. Exact soliton solutions are obtained through the application of the modified extended tanh (MET) method. The obtained wave figures in 3D, 2D, and contour are highly localized and determine an individual frequency shift under the behavior of sharp peak, periodic wave, and singular soliton. The MET method shows to be a valuable analytical tool for obtaining soliton solutions, essential for understanding the dynamics of nonlinear wave phenomena. Numerical simulations enable us to explore soliton solutions in two and three dimensions, shedding light on their properties over time. Our results have wide applications in various domains, including stochastic processes and nonlinear dynamics, impacting advancements in physics, engineering, finance, biology, and beyond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.