Abstract

We report the synthesis, crystal structure, thermal response, and electrochemical behavior of the Prussian blue analogue (PBA) K2Cu[Fe(CN)6]. From a structural perspective, this is the most complex PBA yet characterized: its triclinic crystal structure results from an interplay of cooperative Jahn–Teller order, octahedral tilts, and a collective “slide” distortion involving K-ion displacements. These different distortions give rise to two crystallographically distinct K-ion channels with different mobilities. Variable-temperature X-ray powder diffraction measurements show that K-ion slides are the lowest-energy distortion mechanism at play, as they are the only distortion to be switched off with increasing temperature. Electrochemically, the material operates as a K-ion cathode with a high operating voltage and an improved initial capacity relative to higher-vacancy PBA alternatives. On charging, K+ ions are selectively removed from a single K-ion channel type, and the slide distortions are again switched on and off accordingly. We discuss the functional importance of various aspects of structural complexity in this system, placing our discussion in the context of other related PBAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.