Abstract

Transparent resistive switching random access memory (ReRAM) is of interest for the future integrated invisible circuitry. However, poor understanding of its working mechanism in transparent ReRAMs with the indium tin oxide (ITO) electrode is still a critical problem and will hinder its widespread applications. To reveal the actual working mechanism in transparent ReRAMs with the ITO electrode, we investigate the transparent ITO/SiOx/ITO memory devices (∼82% transmittance in the visible region) and compare it with ITO/SiOx/Au memory devices, which both can exhibit reproducible bipolar switching. The indium (In) filament evolution, which accounts for the bipolar switching behaviors in the ITO/SiOx/ITO (or Au) memories, is directly observed using transmission electron microscopy on samples with different memory states (electroformed, ON, and OFF). These studies uncover the microscopic mechanism behind the bipolar switching in SiOx-based ReRAM devices with the ITO electrode, providing a general guidance for the design of high-performance ReRAMs with large scalability and high endurance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.