Abstract

Let $X$ be a Banach space. We study the circumstances under which there exists an uncountable set $\mathcal A\subset X$ of unit vectors such that $\|x-y\|>1$ for distinct $x,y\in \mathcal A$. We prove that such a set exists if $X$ is quasi-reflexive and non-separable; if $X$ is additionally super-reflexive then one can have $\|x-y\|\geqslant 1+\varepsilon$ for some $\varepsilon>0$ that depends only on $X$. If $K$ is a non-metrisable compact, Hausdorff space, then the unit sphere of $X=C(K)$ also contains such a subset; if moreover $K$ is perfectly normal, then one can find such a set with cardinality equal to the density of $X$; this solves a problem left open by S. K. Mercourakis and G. Vassiliadis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.