Abstract

A smart biosensor based on piezoelectric and semiconducting properties of Barium titanate nanoparticles (BT NPs) by means of a piezoelectric nanogenerator (PNG) is reported for the first time. An Al/BT/ITO NG (Aluminum (Al)/Barium titanate (BT)/Indium Tin Oxide (ITO) nanogenerator) was devised as a self-powered biosensor for actively detecting glucose. The piezoelectric output generated from this NG has dual functions, as both an energy source and a biosensing signal. The biomolecule alters device conductance (charge-carrier density), providing a gate potential, and can vary the local work function and band alignment due to its adsorption on the surface of BT NPs (interfacial contact effect). Here, we tailored the piezoelectric and semiconducting properties of BT NPs using glucose molecules. The glucose molecules (lewis base) on the surface of BT NPs film (lewis acid) act as a gate potential, and the field effect eventually influence the charge carrier density (electrons) of BT NPs film, which varies the screening effect of free-carriers on the piezoelectric output. The novel self-powered glucose biosensor has good selectivity (∼6-fold increase in response vs. interferents) and the approach demonstrated here can serve as a prototype for the development of next-generation smart/self-powered nanosystems for theranostic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.