Abstract
This paper proposes a simple and effective texture recognition method that uses a new class of jet texton learning. In this approach, first a Jet space representation of the image is derived from a set of derivative of Gaussian (DtGs) filter responses upto 2nd order (R6), so called local jet vector (Ljv), which satisfies the scale space properties, where the combinations of local jets preserve the intrinsic local structure of the image in a hierarchical way and are invariant to image translation, rotation and scaling. Next, the jet textons dictionary is learned using K-means clustering algorithm from DtGs responses, followed by a contrast Weber law normalization pre-processing step. Finally, the feature distribution of jet texton is considered as a model which is utilized to classify texture using a non-parametric nearest regularized subspace (Nrs) classifier. Extensive experiments on three large and well-known benchmark database for texture classification like KTH-TIPS, Brodatz and CUReT show that the proposed method achieves state-of-the-art performance, especially when the number of available training samples is limited. The source code of complete system is made publicly available at https://github.com/swalpa/JetTexton.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.