Abstract

In this paper, we study the unconditional convergence and error estimates of a Galerkin-mixed FEM with the linearized semi-implicit Euler scheme for the equations of incompressible miscible flow in porous media. We prove that the optimal $L^2$ error estimates hold without any time-step (convergence) conditions, while all previous works require certain time-step restrictions. Our theoretical results provide a new understanding on commonly used linearized schemes. The proof is based on a splitting of the error into two parts: the error from the time discretization of the PDEs and the error from the finite element discretization of corresponding time-discrete PDEs. The approach used in this paper can be applied to more general nonlinear parabolic systems and many other linearized (semi)-implicit time discretizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.