Abstract

Suppression pools are an essential passive system for source term attenuation in boiling water reactors during severe accidents, particularly during Station BlackOut (SBO) sequences, as it happened in Fukushima.This paper investigates how uncertain predictions of suppression pools decontamination can be. Based on MELCOR 2.1 calculations of Fukushima Unit 1, a stand-alone version of SPARC-90 (Suppression Pool Aerosol Removal Code) has been used in combination with DAKOTA-6.4, to propagate the uncertainties in the input deck variables affecting the Decontamination Factor (DF). The results indicate that DF uncertainties may spread around two orders of magnitude and the uncertainty margin stays roughly constant over time. In addition, a sensitivity analysis based on the Pearson and Spearman correlation coefficients has been carried out and pointed that uncertainties associated to particle inertia (i.e., particle density and size) and in-pool phase change (i.e., non-condensible gas fraction in the carrier gas) dominate the uncertainties found in the DF for this specific scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.