Abstract

Batch fabrication processes used to produce micro-electro-mechanical systems (MEMS) are prone to uncertainties in the system geometrical and contact parameters as well as material properties. However, since the common design method for these systems is typically based on precise deterministic assumptions, it is necessary to get more insight into their variations. To this end, understanding the influences of uncertainties accompanied by these processes on the system performance and reliability is warranted. The present paper focuses on predictions of uncertainty measures for MEMS switches based on the transient dynamic response, in particular, the bouncing behavior. To understand and quantify the influence of pertinent parameters on the bouncing effects, suitable mathematical model that captures the bouncing dynamics as well as the forces that are dominant at this micron scale are employed. Measure of performance in terms of second-order statistics is performed, particularly for the beam as well as beam tip parameters since excessive tip bounce is known to degrade switch performance. Thus, the present study focusses on the influence of uncertainties in the beam tip geometry parameters such as beam tip length/width as well as contact asperity variables such as the area asperity density and the radius of asperities. In addition to beam tip parameters, this study quantifies the effects of uncertainties in Young's modulus, beam thickness as well as actuation voltage. These influences on significant switch performance parameters such as initial contact time and maximum bounce height have been quantified in the presence of interactive system nonlinearities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.