Abstract

The concern of the environment and energy sustainability requests a crucial target of CO2 abatement and results in a relatively high penetration of renewable energy generation in the transmission system. For maintaining system reliability and security, the transmission company (TRANSCO) has to make strategic planning to handle the uncertainty challenges from the intermittent renewable energy resources. In this paper, a stochastic multi-period multi-objective transmission planning (MPMOTP) model is proposed to reduce correlated uncertainties from renewable energy generation, conventional generation, demand-side variations, market price volatility, and transmission configuration. Three objectives, i.e. social CO2 reduction benefit, energy purchase and network expansion cost and power delivery profit, are optimized simultaneously by a developed two-phase multi-objective particle swarm optimization (MOPSO) method. The feasibility and effectiveness of the proposed uncertainty-averse MPMOTP model have been verified by the IEEE 24-bus test system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.