Abstract

This paper investigates the reverberation time estimation methods which employ backward integration of adaptively identified room impulse responses (RIRs). Two kinds of conditions are considered; the first is the "ideal condition" where the anechoic and reverberant signals are both known a priori so that the RIRs can be identified using system identification methods. The second is that only the reverberant speech signal is available, and blind identification of the RIRs via dereverberation is employed for reverberation time estimation. Results show that under the "ideal condition," the average relative errors in 7 octave bands are less than 2% for white noise and 15% for speech, respectively, when both the anechoic and reverberant signals are available. In contrast, under the second condition, the average relative errors of the blindly identified RIR-based reverberation time estimation are around 20%-30% except the 63 Hz octave band. The fluctuation of reverberation times estimated under the second condition is more severe than that under the ideal condition and the relative error for low frequency octave bands is larger than that for high octave bands under both conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.