Abstract

Observations are increasingly used to detect critical slowing down (CSD) to measure stability changes in key Earth system components. However, most datasets have non-stationary missing-data distributions, biases and uncertainties. Here we show that, together with the pre-processing steps used to deal with them, these can bias the CSD analysis. We present an uncertainty quantification method to address such issues. We show how to propagate uncertainties provided with the datasets to the CSD analysis and develop conservative, surrogate-based significance tests on the CSD indicators. We apply our method to three observational sea-surface temperature and salinity datasets and to fingerprints of the Atlantic Meridional Overturning Circulation derived from them. We find that the properties of these datasets and especially the specific gap filling procedures can in some cases indeed cause false indication of CSD. However, CSD indicators in the North Atlantic are still present and significant when accounting for dataset uncertainties and non-stationary observational coverage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.