Abstract

A method for analyzing the uncertain adjustability of charging stations (CSs) under the influence of multi-attribute group decision-makings of electric vehicles (EVs) is proposed. Firstly, considering physical constraints of parameters such as charging power and energy stored, a model for characterizing the schedulability of a single EV under different charging modes including rated power charging, adjustable charging, and flexible charging and discharging is constructed. Secondly, since the charging mode selection of EVs is a comprehensive decision considering charging cost, charging time and other attributes, and individual decision-making is often affected by group users, an EV charging mode selection probability model is developed based on the multi-attribute group decision-making theory. Further, scheduling potential boundary parameters of CSs affected by the scheduling potential of all EVs in the station are derived based on the Minkowski sum theory, and their probability characteristics are calculated by combining the charging mode selection probability of single EVs and the schedulability under each mode. Finally, case studies prove the superiority of the proposed theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.