Abstract

The fire-safe structural design and construction of unbonded post-tensioned (UPT) flat plate concrete structures has recently come under debate in the UK, and questions are being raised regarding the response to fire of post-tensioned concrete slabs. Related to these concerns is the real world response of continuous UPT tendons inside such structures both during and after a fire, which is largely unknown and depends on many potentially important factors which are not currently accounted for in standard fire tests. Several credible concerns exist for UPT concrete structures in fire, most notably the potential for premature tendon rupture due to localized heating which may result from a number of possible causes (discussed herein). The research presented in this paper deals specifically with the time-temperature-stress-strength interdependencies of stressed UPT tendons under localized transient heating, as may be experienced by tendons in a real UPT building in a real fire. Nineteen high temperature stress relaxation tests on UPT tendons of realistic length and parabolic longitudinal profile are reported. It is shown that localized heating of UPT tendons is likely to induce premature tendon rupture during fire, even in structures which meet the prescriptive concrete cover requirements imposed by available design codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.