Abstract

The traditional 8-coefficient bearing model, used in linear rotor dynamics, is shown here to be inadequate for the unbalance response calculation of rotor systems supported on hydrodynamic journal bearings placed close to nodal points of excited modes of vibration. In such situations, one cannot neglect the time varying tilt angle between journals and bearings, whose consideration leads to the adoption of a 32-coefficient bearing model. Numerical results indicate that the differences between vibration amplitudes calculated using both bearing models can be greater than 100%, while discrepancies in the predicted stability thresholds are small. The conclusions of the study are coherent with previously published theoretical and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.