Abstract

Quantum key distribution (QKD) has a promise of unconditionally secure communication between the remote sides. The real-world QKD implementations, however, have numerous loopholes, both of engeneering and physical origin, and compromise the security promise. In this work, we investigate two attack strategies on the passive side channel of the light source along with the optimal cloning attack on the BB84 protocol with decoy-states. We calculate an upper bound of a secret key rate for these situations and show that the joint measurement attack on the signal and side channel degree of freedom is more effective to the adversary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.