Abstract

The serotonergic system has been hypothesized to play an important role in prion diseases. Specifically, hyperactivity of the serotonergic system in prion diseases is suggested by an increase in the turnover rate of the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) in human and experimental prion diseases. The 5-HT transporter (5-HTT) determines the duration of serotonergic neurotransmission by way of reuptake of 5-HT from the extracellular space. 5-HTT availability is reduced in brains of patients with the human prion disease familial fatal insomnia. To further clarify a possible role of the 5-HTT in prion diseases we investigated whether mice lacking the 5-HTT display an altered susceptibility to experimental scrapie infection. Surprisingly, 5-HTT knockout mice developed mouse scrapie in a time course similar to wildtype control mice with accumulation of the pathological prion protein, PrP Sc and with typical pathological hallmarks of the disease. These findings argue against a major role of the 5-HTT in the pathogenesis of prion diseases in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.