Abstract

Taste is crucial in driving food choice and preference. Umami is one of the basic tastes defined by characteristic deliciousness and mouthfulness that it imparts to foods. Identification of ingredients to enhance umami taste is of significant value to food industry. Various models have been shown to predict umami taste using feature encodings derived from traditional molecular descriptors such as amphiphilic pseudo-amino acid composition, dipeptide composition, and composition-transition-distribution. Highest reported accuracy of 90.5 % was recently achieved through novel model architecture. Here, we propose use of biological sequence transformers such as ProtBert and ESM2, trained on the Uniref databases, as the feature encoders block. With combination of 2 encoders and 2 classifiers, 4 model architectures were developed. Among the 4 models, ProtBert-CNN model outperformed other models with accuracy of 95 % on 5-fold cross validation data and 94 % on independent data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.