Abstract

Traditional methods of ultra-wideband (UWB) radar signal generation suffer from several disadvantages such as low antenna radiation efficiency and lack of accurate control of signal parameters like pulse shape, pulse repetition interval (PRI), and its spectrum. UWB signals can be generated by expanding the desired radar waveform in a Fourier series and then synthesizing the waveform by generating the individual terms in the expansion from harmonically related oscillators. Signals thus produced overcome the disadvantages of traditional methods of UWB signal generation. Fourier series based method for generation of complex amplitude coded waveforms is developed which can be used to generate time domain equivalent of Barker and other codes for application in radar and communication areas. In radar applications, these coded waveforms, with accurate and stable waveform parameters, shall allow pulse compression and coherent integration. The additional processing gain provided by these operations reduces the need for high peak power in radar transmitters which is one of the bottlenecks in the implementation of operational UWB radars. This paper also describes a UWB radar concept which incorporates Fourier synthesized waveforms. Related digital signal processing issues are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.