Abstract
Single-crystal semiconductor nanomembranes provide unique opportunities for basic studies and device applications of strain engineering by virtue of mechanical properties analogous to those of flexible polymeric materials. Here, we investigate the radiative properties of nanomembranes based on InGaAs (one of the standard active materials for infrared diode lasers) under external mechanical stress. Photoluminescence measurements show that, by varying the applied stress, the InGaAs bandgap energy can be red-shifted by over 250 nm, leading to efficient strain-tunable light emission across the same spectral range. These mechanically stressed nanomembranes could therefore form the basis for actively tunable semiconductor lasers featuring ultrawide tunability of the output wavelength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.