Abstract

The optical characteristics of an n-type ZnO/p-type Si crossed nanowire (NW) light-emitting diode (LED) were investigated in this study. N-ZnO nanowires (NWs) were synthesized by thermal chemical vapor deposition, and p-Si NWs were fabricated by etching a single crystalline Si wafer. The p–n heterojunction LED formed by the cross of the n-ZnO and p-Si NWs selected from the NWs prepared in this work exhibited the current rectifying behavior with the turn-on voltage of 1.3 V. Our investigation of the photoluminescence spectrum of the as-grown n-ZnO NWs and electroluminescence spectrum of the n-ZnO/p-Si crossed NW LED reveals that both spectra have the same position of peaks at 390 nm. This result indicates that the UV emission from the crossed NW LED is mostly attributed to the band-to-band transition of electrons in the ZnO NW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.