Abstract

There is a cultivar difference in the response to ultraviolet-B (UVB: 280-320 nm) in rice (Oryza sativa L.). Among Japanese lowland rice cultivars, Sasanishiki, a leading Japanese rice cultivar, is resistant to the damaging effects of UVB while Norin 1, a close relative, is less resistant. We found previously that Norin 1 was deficient in cyclobutane pyrimidine dimer (CPD) photorepair ability and suggested that the UVB sensitivity in rice depends largely on CPD photorepair ability. In order to verify that suggestion, we examined the correlation between UVB sensitivity and CPD photolyase activity in 17 rice cultivars of progenitors and relatives in breeding of UV-resistant Sasanishiki and UV-sensitive Norin 1. The amino acid at position 126 of the deduced amino acid sequence of CPD photolyase in cultivars including such as Norin 1 was found to be arginine, the CPD photolyase activities of which were lower. The amino acid at that position in cultivars including such as Sasanishiki was glutamine. Furthermore, cultivars more resistant to UVB were found to exhibit higher photolyase activities than less resistant cultivars. These results emphasize that single amino acid alteration from glutamine to arginine leads to a deficit of CPD photolyase activity and that CPD photolyase activity is one of the main factors determining UVB sensitivity in rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.