Abstract

To more readily evaluate the complex biogeochemistry of selenium, a flow-through electrochemical method was developed that can accurately determine Se(IV) concentrations in aqueous samples to part-per-trillion levels without signal calibration. Stripping methods were used in conjunction with a high-efficiency, flow-through cell. The cell was designed with a novel gold working electrode that was separated from a porous counter electrode by a Nafion membrane. Because this design permitted exhaustive deposition of selenium from the sample stream as well as efficient coulometric stripping, determinations obeyed Faraday's law over a reasonably wide range of operating conditions. The method had a minimum quantitation limit of approximately 8 ng and a maximum limit of 800 ng for Se(IV). It was reliable for sample volumes as small as 0.5 mL and as high as 20 mL, thereby allowing determinations from part-per-million to just below part-per-billion levels. Interferences from Cu(II) and arsenate were evident, but only when these species were present at concentrations exceeding 10 mg.L-1. Overall, the method had a performance comparable to hydride-generation atomic absorption spectrometry but with less cumbersome equipment and freedom from calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.