Abstract

Herein, a series of ultrathin h-BN/Bi2MoO6 heterojunction with excellent photocatalytic activity has been firstly prepared via a feasible solvothermal method. Our results suggest that the optimized photocatalyst possesses a high degradation ratio of tetracycline (TC), oxytetracycline (OTC) and doxycycline (DC) up to 99.19%, 95.28% and 91.04% under visible-light irradiation, respectively. We highlight that the outstanding photocatalytic activity is mainly attributed to the prominent performance of tetracycline adsorption on h-BN and the dominant visible-light absorption by Bi2MoO6 as well as the effective photogenerated carrier separation induced by the synergetic effect between h-BN and Bi2MoO6. Moreover, DFT calculations reveal that the built-in electric field formed between h-BN and Bi2MoO6 gives rise to the separation of carriers and the polarization of tetracycline molecules. Last but not the least, the specific process and micro-mechanism of the photocatalytic tetracycline degradation under visible-light driven have also been illuminated. The present work pioneers the application of ultrathin h-BN/Bi2MoO6 heterojunction as a novel tetracycline degradation photocatalyst and further guides the design of more visible-light photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.