Abstract

Owing to the attractive energy band properties, a black phosphorus (BP)-analogue semiconductor, germanium selenide (GeSe), shows a promising potential applied for optoelectronic devices. Herein, ultrathin GeSe nanosheets were systematically prepared via a facile liquid-phase exfoliation approach, with controllable nanoscale thickness. Different from BP, ultrathin GeSe nanosheets exhibit good stability under both liquid and ambient conditions. Besides, its ultrafast carrier dynamics was probed by transient absorption spectroscopy. We showed that the GeSe nanosheet-based photodetector exhibits excellent photoresponse behaviors ranging from ultraviolet (UV) to the visible regime, with high responsivity and low dark current. Furthermore, the detective ability of such a device can be effectively modulated by varying the applied bias potential, light intensity, and concentration of the electrolyte. Generally, our present contribution could not only supply fundamental knowledge of a GeSe nanosheet-based photoelectrochemical (PEC)-type device, but also offer guidance to extend other possible semiconductor materials in the application of the PEC-type photodetector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.