Abstract

Six types of setae and one type of cuticular depression were examined on the lateral antennule of the spiny lobster Panulirus interruptus using scanning electron microscopy. The organization and ultrastructure of the innervation of the most numerous setal type, the aesthetasc, were investigated using light- and transmission electron microscopy. Each aesthetasc is innervated by approximately 300 bipolar neurons whose sensory dendrites penetrate the hair and extend toward the tip, and whose axons project towards the central nervous system. The neuronal somata and two types of glia form a cluster within the antennular lumen. The inner sheath-cell somata encircle the dendritic tract distal to the sensory somata. These cells appear to extend distal processes which wrap the dendritic tract to the base of the aesthetasc. Elongate outer sheath cells are interposed between the glia-wrapped dendritic tract and the hypodermis which underlies the antennule cuticle. A continuous investment of neural lamella separates the hypodermis, the entire cluster of somata, and sensillar nerve from the antennule lumen. The organization of the neuronal somata and their association with outer and inner sheath cells in this marine species appear similar to those of crustaceans from freshwater and terrestrial habitats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.