Abstract

We examined the ultrastructure of the anterior cruciate ligament and assessed age-related changes by comparing the ligaments of young and old monkeys. Ultrathin sections of the anterior cruciate ligament were observed by transmission electron microscopy. The three-dimensional architecture of collagen fibers in the ligament was examined by scanning electron microscopy after tissue specimens were treated with 2N NaOH to digest the extracellular matrix. At the surface layer of the cruciate ligament in young monkeys, fusiform-shaped fibroblasts actively produced collagen fibrils. The ligament consisted of parallel bundles of dense collagen fibrils of approximately 200nm in diameter. Collagen fibrils appeared to run linearly. Ligament fibrocytes in the deep layer had a stellate form. Ligament fibrocytes decreased in number and showed marked atrophy in old age. Collagen fibrils had a looser configuration in older monkeys. Despite atrophy of fibroblasts in the deep layer of the anterior cruciate ligament, the area with atrophic fibroblasts in the ligament expands with age, which can likely cause deterioration of and a reduction in collagen fibers. This information can be applied in studies on the cause of the low repair ability of and aging-related changes in the anterior cruciate ligament in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.