Abstract

The relationships between cholinergic and neuropeptide Y-containing neuronal systems in the rat striatum were examined using a dual immunoperoxidase labelling method. These neurons were identified by their immunoreactivity to choline acetyltransferase and neuropeptide Y, respectively, and were visualized on the same sections using 3,3′-diaminobenzidine and benzidine dihydrochloride as distinct chromogens under two conditions: (i) neuropeptide Y detection by the 3,3′-diaminobenzidine diffuse brown reaction product and choline acetyltransferase detection by the benzidine dihydrochloride blue, granular reaction product. (ii) choline acetyltransferase detection by 3,3′-diaminobenzidine and neuropeptide Y detection by benzidine dihydrochloride. Although both neuropeptide Y- and choline acetyl-transferase-immunoreactive cell bodies were simultaneously detected and were easily distinguishable whatever the conditions used, neuropeptide Y- and choline acetyltransferase-immunoreactive dendrites and axons could not be visualized on the same sections, since only the diaminobenzidine-labelled processes were detectable. Light microscopic observations on sections dual labelled with either method confirmed that choline acetyltransferase and neuropeptide Y immunoreactivities were localized in morphologically different populations of striatal neurons scattered throughout the striatum, choline acetyltransferase immunoreactivity being associated with large neurons and neuropeptide Y immunoreactivity with medium-sized neurons. In addition, the choline acetyltransferase-immunoreactive neurons were found to be more numerous than the neuropeptide Y-immunoreactive neurons and to be prevalent in the dorsolateral areas of the striatum, whereas neuropeptide Y-immunoreactive neurons were preferentially found in the ventromedial areas of this structure. Electron microscopic observations on sections processed under either condition revealed that choline acetyltransferase-positive terminals form synaptic contacts of the symmetrical type with neuropeptide Y-positive somata and proximal dendrites and that choline acetyltransferase-positive neurons are contacted by neuropeptide Y-positive terminals. These data show that the striatal neuropeptide Y- and choline acetyltransferase-containing neuronal systems have reciprocal synaptic interactions and provide morphological support for the hypothesis that striatal cholinergic and neuropeptide Y interneuron activities may be functionally linked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.