Abstract

We characterize a 1.14 μm ultrastable semiconductor laser system for precision spectroscopy of Tm inner-shell clock transition using a frequency comb. We stabilize both the repetition and the carrierenvelope offset frequencies of a commercial Ti : sapphire femtosecond laser to a passive hydrogen maser using a home-built f-2f interferometer. By measuring the absolute frequency of the 1.14 μm laser stabilized to a high-finesse ULE cavity, we determine the zero-expansion temperature point of the cavity and the rate of linear drift of the the cavity resonance frequency due to “aging” of the ULE glass. We achieve less than 10 Hz frequency instability of the laser within 1,000 s after the linear drift compensation. We also measured the absolute frequency of the 1.14 μm transition in Tm to be 262 954 938 269 213(30) Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.