Abstract

In this work, Eu3+-doped CsPbCl2Br1 in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method. This work reports a novel Eu3+-doped CsPbCl2Br1 perovskite quantum dots (QDs) glass with high sensitivity for optical temperature sensing. The relation of fluorescence intensity ratio (FIR) with the temperature was studied in the temperature range of 80–440 K. Notably, the maximum absolute temperature sensitivity (Sa) and relative temperature sensitivity (Sr) of Eu3+-doped CsPbCl2Br1 perovskite QDs glass can reach as high as 0.0315 K–1 and 3.097%/K, respectively. Meanwhile, Eu3+-doped CsPbCl2Br1 QDs glass demonstrates good water resistance, excellent thermal and cold cycling stability performance. The Eu3+-doped QDs glass materials can bring inspiration to the future exploration of rare earth ion-doped QDs glass material on the application of optical temperature sensing in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.