Abstract

Herein, novel manganese sulfide nanoparticles (MnS NPs) decorated reduced graphene oxide (rGOS) nanocomposite have been designed through a facile ultrasound-assisted method and followed by a sonication process. After then, as-synthesized α-MnS@rGOS was characterized by HRTEM, FESEM, XPS, XRD and EIS. Furthermore, the α-MnS@rGOS nanocomposite modified SPCE (screen-printed carbon electrode) shows excellent electrochemical sensing performance towards Parkinson’s disease biomarker of dopamine (DA). Moreover, the fabricated sensor showed a wide linear range for dopamine between 0.02 and 438.6 µM and nanomolar detection limit (3.5 nM). In addition, the α-MnS@rGOS modified SPCE showed selectivity towards the detection of dopamine in presence of a 10-fold higher concentration of other important biomolecules. The nanocomposite film modified SPCE sensor was good stable and reproducible towards the detection of Parkinson's disease biomarker. Furthermore, the as-synthesized α-MnS@rGOS nanocomposite modified SPCE has been applied to the determination of dopamine in human serum, rat serum and pharmaceutical samples with acceptable recoveries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.