Abstract
Inefficient gene delivery poses a challenge for non‑viral gene therapy. Cytoplasmic and nuclear membrane barriers are responsible for the inefficiency as they restrict the import of exogenous genes. The present study aimed to improve the transfection efficiency using a novel gene delivery system, which consisted of two components: ultrasound microbubbles and the nuclear factor κB (NFκB) binding motif. Ultrasound-targeted microbubble destruction (UTMD) was used to enhance the cytoplasmic import of plasmids and the NFκB binding motif was added to promote the nuclear intake of the plasmid from the cytoplasm. In the present study, human umbilical vein endothelial cells were transfected using UTMD with two different Cy3-labeled plasmids, phSDF-1α and phSDF‑1α‑NFκB. phSDF-1α-NFκB was constructed by inserting a specific DNA targeting sequence (five optimal repeats of the binding motif for the inducible transcription factor NFκB) into phSDF‑1α. The nuclear import and gene expression efficiency of phSDF-1α-NFκB were compared with those of phSDF-1α to investigate the effect of the NFκB binding motif on transfection. The results showed that UTMD significantly increased the cytoplasmic intake of pDNA and maintained high cell viability. The nuclear import and gene expression of phSDF-1α‑NFκB‑transfected cells were significantly higher than those transfected with phSDF-1α. Compared with the NFκB‑free plasmids, the quantity of NFκB plasmids in the nucleus increased 6.5-fold and the expression of SDF-1α was 4.4-fold greater. These results suggest that UTMD combined with NFκB binding motif significantly improve transfection efficiency by enhancing the cytoplasmic and nuclear import of exogenous plasmid DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.