Abstract

In this study, under a sonochemical method, a 3D, porous Zn(II)-based metal-organic framework [Zn(TDC)(4-BPMH)]n·n(H2O) is produced, which is called compound 1. To this end, the dicarboxylate linker of TDC, (2,5-thiophene dicarboxylic acid) and the pillar spacer of 4-BPMH, (N,N-bis-pyridin-4-ylmethylene-hydrazine) were employed. Moreover, variations in the morphology and growth of the micro/nanoparticles of compound 1 were investigated in terms of the effect of temperature, ultrasound irradiation power, sonication time, initial reagent concentrations, and pyridine concentration as a modulator. DFT model was used to examine the sonication effect on the distribution of the pore sizes. Moreover, the preparation method effect on the porosity and removal of two sample pollutants (i.e., 2,4-dichlorophenol (24-DCP) and amoxicillin (AMX)) from wastewater was studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.