Abstract

Ultrasonic manipulation is a noncontact method of trapping and holding particles in suspension, and has found many applications in microfluidic systems. Typically, ultrasonic standing waves are used; this approach is well established in fully enclosed microfluidic systems consisting of channels or chambers with an attached piezoelectric actuator. In this work, we examine the use of ultrasonic manipulation in open fluid films, which offer a high degree of accessibility. A piezoelectric actuator is presented which can be lowered into a separate fluid tray. This two-part system offers a high degree of flexibility; indeed the actuator can be removed with little disturbance to the particle patterns, so manipulation could potentially be periodically applied as required. Particle manipulation is shown to be possible over a distance many times the size of the actuator. Furthermore, particle manipulation can also be achieved in a tilted fluid film, so alignment between the two parts of the system is not critical to its operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.