Abstract

The authors have observed the accumulation of frost on the surface of a rectangular aluminum alloy (duralumin) plate flexurally vibrating at approximately 37 kHz in an atmosphere of almost 100% relative humidity at 2°C. The plate surface, which had been prepolished with abrasive slurry for maintaining its average surface roughness of about 100 nm, was refrigerated at a temperature of -20°C with cold carbon-dioxide gas as coolant. Experiments have been conducted with and without fine silver oxide powder spread on the plate surface so as to examine the effect of artificial ice crystal nuclei. Ultrasonic vibrations with an amplitude of 3.4 µm (rms) are found to suppress frost accumulation by approximately 60%. The phenomenon cannot be ascribed directly to the heat generation caused by high-amplitude vibration, but may have a complex mechanical and/or acoustical effect on small ice crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.