Abstract

In this study, sulfamethoxazole (SMX) degradation was investigated using an ultrasonic-assisted ozone oxidation process (UAOOP). The influencing factors of ozone concentration, pH, initial SMX concentration, ultrasound power density, and radical scavenger were studied. It was proved that ultrasound application enhanced ozonation function for SMX degradation. Color change of the water during the oxidation process was found to be corresponding to SMX concentration decay in wastewater. The results indicated that SMX degradation followed a pseudo-first-order kinetic model under experimental operating conditions. SMX degradation rate increased with ozone concentration, pH, and ultrasound power density, and was inversely proportional to the initial SMX concentration. Although the direct and indirect oxidation of ozone simultaneously existed in the UAOOP system, the direct oxidation was the predominant way. Meanwhile, the biological toxicity of the solution was weakened and biological oxygen demand/chemical oxygen demand ratio increased from 0 to 0.54. It was indicated that the UAOOP system was efficient to treat SMX wastewater and promote biodegradability for further biological treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.