Abstract

The modified pectin (MP) showed the improved functional properties than the native one. The aim of present study was to develop the ultrasonic accelerated bicarbonate-hydrogen peroxide system for pectin modification to generate short fragments with advanced bioactive properties. The depolymerization effects of this system on the physicochemical properties, structural features, and bioactivity of the degraded fragments were studied systematically. The results indicated that the molecular weight of pectin was reduced drastically from 1088 kDa to 33 kDa within 50 min under an optimized condition (MH2O2-MNaHCO3 = 1:2.5, 50 °C, and ultrasound intensity = 11.4 W/cm3). The resulting fragments also showed lower degree of methoxylation and rheological viscosity. The investigation on the sample structures and active oxygen species demonstrated that the highly active O2- species generated from HCO4- of NaHCO3-H2O2 acted preferentially on the GalA backbone in the HG region, while the RG-I region was maintained; and ultrasound enhanced the degradation efficiency via both chemical effects (increasing the transformation of free radicals) and mechanical effects (disaggregating polysaccharide clusters). The atomic force microscope (AFM) imaging directly verified the branched-chain morphology of pectin and the small-strand degradation fragments. Moreover, ultrasound and NaHCO3-H2O2 treatment induced high galactose content in the degraded products, contributing to an improved inhibitory activity against A549 lung cancer cells, as shown by MTT assay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.