Abstract

We report static and dynamic light-scattering measurements of aqueous glucose solutions near their glass transition. Photon correlation spectroscopy reveals two relaxation processes present in the supercooled liquid: a nonexponential and nonhydrodynamic, alpha -relaxation occurring at short times and an exponential and hydrodynamic relaxation occurring at longer times. The slow relaxation is seen only in the polarized scattering geometry and is in many ways identical to the "ultraslow" mode recently observed by others in specially annealed molecular glass-forming liquids and attributed to the formation of long-range density correlations or "dynamic clusters." Static light scattering confirms the existence of excess scattering in our glucose solutions that is consistent with clusters in a size range between 30 and 60nm . The size of the clusters varies with the water content and the clustering appears to be associated with the percolation of a hydrogen-bonded glucose network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.