Abstract

Discrimination of illegal cooking oil is a conundrum in the fields of analytical chemistry and food safety due to complicated sample systems, lack of common targets, and stringent demand of ultrahigh detection sensitivity for corresponding analytical methods. Capsaicin, one of the exogenous molecules that is subsistent in recycled kitchen waste oils, can be regarded as a target for illegal cooking oil identification. Nowadays, tracing capsaicin in oils is implemented mainly by high-performance liquid chromatography–mass spectrometry, which displays shortcomings in high costs and incapableness for field test. Here, we established a surface-enhanced resonance Raman scattering approach to detect capsaicin and identify illegal cooking oils by means of the molecular derivatization treatment of capsaicin. This method features high detection sensitivity with the detection limit of 1.0 × 10–8 M, rapid response (<7 min detection duration), and simplicity in sample pretreatment, which is available for fast field test of illegal cooking oils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.