Abstract

In this paper, we study the effects of Lorentz Symmetry Breaking on the thermodynamic properties of ideal gases. Inspired by the dispersion relation coming from the Carroll–Field–Jackiw model for Electrodynamics with Lorentz and CPT violation term, we compute the thermodynamics quantities for a Boltzmann, Fermi–Dirac and Bose–Einstein distributions. Two regimes are analyzed: the large and the small Lorentz violation. In the first case, we show that the topological mass induced by the Chern–Simons term behaves as a chemical potential. For Bose–Einstein gases, a condensation in both regimes can be found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.