Abstract

We report static pressure compression of cerium metal to 208 GPa (volume compression V/V0=0.37) in a diamond anvil cell at room temperature. Cerium is unique in the 4f elements because of proximity of the f shell to the Fermi energy and related phase transformations induced by pressure. The energy-dispersive x-ray diffraction studies were carried out on cerium metal to 208 GPa using a synchrotron x-ray source and an internal copper pressure standard. A collapsed body centered tetragonal phase is found to be stable to the highest pressure with axial ratio remarkably constant at 1.680±0.006 in the 90–208 GPa pressure range in excellent agreement with theory. Cerium is thus isostructural and isoelectronic with 5f-band metal thorium at ultrapressures. We present equation of state parameters, which describe the compression of cerium to ultrapressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.