Abstract
Bias-enhanced nucleation and growth of ultrananocrystalline diamond (UNCD) nano-pillars on silicon substrates by low-pressure microwave plasma chemical vapor deposition in a hydrogen-rich gas mixture with methane is reported. Direct-current biasing of the substrate in a constant-current mode is applied to substrates, which are pre-heated to 800 °C, to result in a negative bias voltage of greater than 350 V throughout the nucleation and growth process. Self-masking by UNCD clusters, angle dependent sputtering of UNCD clusters, and ion-assisted chemical vapor deposition by bias enhanced bombardment of energetic ions are attributed to the formation of UNCD nano-pillars. High-resolution transmission electron microscopy analysis indicates that an interfacial layer exists between the silicon substrate and the UNCD nano-pillars. The porous UNCD film with high-density nano-pillars exhibits excellent optical anti-reflectivity and improved electron field emission characteristics compared to smooth and solid UNCD films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.