Abstract

AbstractTransparent afterglow crystals are keenly desired for three‐dimensional information storage. Herein, CsCdCl3 perovskite crystals were grown by a programmable cooling procedure in a hydrothermal reactor. The pristine crystal showed an abnormal optical behavior where the absorption increased by 2.3 folds at high temperature, leading to a fourfold boost of photoluminescence (PL) intensity. After Mn2+ doping, the PL quantum yield was improved to nearly unity. Importantly, the doped crystals exhibited an ultralong afterglow up to 12 h after ceasing UV excitation and a high transmittance up to 75% in the visible region. This work brought a new member to the library of transparent afterglow crystal, opening up many possibilities to advanced applications such as volumetric display and three‐dimensional information encryption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.