Abstract

Hydrogels are three-dimensional networked materials that are similar to soft biological tissues and have highly variable mechanical properties, making them increasingly important in a variety of biomedical and industrial applications. Herein we report the preparation of extremely high water content hydrogels (up to 99.7% water by weight) driven by strong host-guest complexation with cucurbit[8]uril (CB[8]). Cellulosic derivatives and commodity polymers such as poly(vinyl alcohol) were modified with strongly binding guests for CB[8] ternary complex formation (K(eq) = 10(12) M(-2)). When these polymers were mixed in the presence of CB[8], whereby the overall solid content was 90% cellulosic, a lightly colored, transparent hydrogel was formed instantaneously. The supramolecular nature of these hydrogels affords them with highly tunable mechanical properties, and the dynamics of the CB[8] ternary complex cross-links allows for rapid self-healing of the materials after damage caused by deformation. Moreover, these hydrogels display responsivity to a multitude of external stimuli, including temperature, chemical potential, and competing guests. These materials are easily processed, and the simplicity of their preparation, their availability from inexpensive renewable resources, and the tunability of their properties are distinguishing features for many important water-based applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.