Abstract
A compartmentalized tyramide labeling system (CoaTi) employing flow cytometry for sorting of yeast cells was developed as ultrahigh-throughput screening for Glucose oxidase (GOx) from Aspergillus niger. CoaTi combines in vitro compartmentalization technology with the CARD reporter system which uses fluorescein tyramide labels for detection of peroxidase activity. Physical connection between cells and fluorescein tyramide radicals was achieved by compartmentalization of yeast cells inside microdroplets of single water-in-oil emulsions. After reaction cells were recovered from single emulsions and sorted by flow cytometry, an error prone PCR mutant library of Glucose oxidase (GOx) containing 10(7) cells and ~10(5) of different GOx variants was screened. Mutagenic conditions of GOx mutant library were selected to generate <1 % of active GOx population in order to explore influence of high mutation frequency on GOx activity. GOx variant Mut12 that contains 5 mutations (N2Y, K13E, T30V, I94V, K152R) showed a 1.2 times decreased K(m) (22.0 vs 18.1 mM) and a 2.7 fold increased k(cat) (150 s(-1) vs 54.8 s(-1)) compared to wt GOx. Compared to the employed parent B11 GOx (16 mM, 80 s(-1)) it has a slightly increased K(m) and 1.8 times increased k(cat).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Combinatorial Chemistry & High Throughput Screening
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.