Abstract

We demonstrate an ultrahigh-sensitive plasmonic sensing of gas, employing a two-dimensional (2D) dielectric grating fabricated by laser interference lithography. The 2D grating was designed with the period of 500nm and prepared in an AZ1505 photoresist layer on a gold film of 20nm thickness deposited on a fused silica glass substrate. The surface plasmon resonance (SPR) in the Kretschmann configuration with spectral interrogation was utilized to measure the response of the sensor to vapors of aqueous solution of ethanol. Based on measurement of the gas refractive indices with the reference Au/Cr/SF10 sample, the resonance wavelength dependence was obtained. The SPR response of the structure in a spectral range of 1.68-1.85µm with a sensitivity of 8200-111,000nm/RIU was revealed. The sensor provides significantly higher sensitivity in comparison to conventional and grating-based SPR sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.