Abstract

Dissolved organic matter in soil is a highly reactive pool of organic matter and is of great importance for biogeochemical cycles in soil. A better understanding of its dynamics relies on its molecular characterisation. Here, the molecular composition of water-extracted organic matter at elevated pressure and temperature (PH-WEOM) obtained from 120 Burgundy soils was investigated using high-field Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR MS). Unsupervised multivariate statistical analysis (UMSA) was used to retrieve classes of samples with specific molecular characteristics. Accordingly, van Krevelen diagram, Kendrick mass defect (KMD), as well as aromaticity index (AI) and aromaticity equivalent (Xc), were applied to present a pool of ubiquitous molecular formulas and to evaluate the PH-WEOM molecular heterogeneity in the sample set. Based on UMSA, the PH-WEOM from forest soils revealed a clearly distinct molecular composition, with major contributions from lignin- and tannin-like compounds, and with its aromaticity related to soil characteristics, especially the soil pH. No clear evidence of land-cover influence on the PH-WEOM molecular composition was found for cropland and grassland soils, but the role of pH was also identified for these samples, and agrees with molecular patterns attributed to microbial activity, with the presence of compounds with high H/C ratio. A group of samples from cropland soils developed on residual formations is characterised by a very specific molecular composition, rich in aliphatic organosulfur-like compounds, highlighting the importance of specific soil processes in the molecular composition of PH-WEOM. This work demonstrates the potential of FT-ICR MS to resolve the high chemical complexity of PH-WEOM in soils and the intricate influences of both biotic and abiotic environmental factors on the molecular composition of PH-WEOM in soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.