Abstract
Lead-free double perovskite Cs2AgBiBr6 has garnered increasing attention in photoelectric applications owing to its good stability and excellent photoelectric properties. However, the poor carrier transport in Cs2AgBiBr6 thin films constraints their further application in photodetection. To overcome this issue, we have developed an innovative low-dimensional Cs2AgBiBr6/CdS heterojunction photodetector with substantially improved performance. The device achieved a high responsivity of 6.66 × 103 A/W, an outstanding specific detectivity of 2.10 × 1014 Jones, and an impressive external quantum efficiency of 1.88 × 106 %. Additionally, the on/off current ratio of the heterojunction device reached an impressive 6.18 × 107. These key parameters are significantly better than those of most previously reported Cs2AgBiBr6-based photodetectors. Furthermore, scanning photocurrent mapping and band arrangement analysis were performed to elucidate the mechanism of photocurrent generation and transport in the low-dimensional Cs2AgBiBr6/CdS heterojunction photodetectors. This study highlights the outstanding performance of Cs2AgBiBr6/CdS heterojunction and provides a simple and effective strategy for developing high-performance Cs2AgBiBr6-based photodetectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.